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Abstract. The vertical distribution of cloud water content (CWC) and cloadtion (CF) over
the tropical oceans, produced by 13 coupled atmosphere-ocean modettesuonthe Phase 5
of Coupled Model Intercomparison Project (CMIP5) are evaluated adaiostSat/CALIPSO
observations as a function of large-scale parameters. AvalaflléPSO simulator CF outputs
are also examined. A diagnostic framework is developed to deconipes#oud simulation
errors into the large-scale errors, cloud parameterizationsesind co-variation errors. We find
that the cloud parameterization errors contribute predominantly totddesrrors for all models.
The errors associated with large-scale temperature and reosstuctures are relatively greater
than those associated with large-scale mid-tropospheric vertidatityeand lower-level
divergence. All models capture the separation of deep and shallow atodid$inct large-scale
regimes; however, the vertical structures of high/low clouds andwvaeations with large-scale
parameters differ significantly from the observations. The deepective clouds simulated in
most models do not reach as high in altitude as observed, and theiaf@Vg€nerally weaker in
magnitude than CloudSat total CWC, which includes the contribution aofippeging
condensates, but are close to CloudSat non-precipitating CWC. Allsregeoduce maximum
CF associated with convective detrainment, but CALIPSO simulaks agree better with
CloudSat/CALIPSO combined retrieval than the model CFs, eslpyedial the middle
troposphere. Model simulated low clouds tend to have little variatihnlavge-scale parameters
except for lower-troposphere stability, while the observed low c@OWLC, CF and cloud top

height vary consistently in all large-scale regimes.
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1. Introduction

The simulations of clouds by the nearly 20 models submitted to tise Bhaf Coupled Model
Intercomparison Project (CMIP5) exhibit large discrepanca® fsatellite observationsifng et
al., 2012]. Despite a number of models displaying a certain degreepobvement in some
aspects of the cloud simulations (e.g., the column-integrated cloud p&ite, no substantial
improvements across the models are found compared to those submitiedPhase 3 of CMIP
(CMIP3), which constitute the basis for the climate projectiortenFourth Assessment Report
(AR4) by the Intergovernmental Panel for Climate Change (IH&&)dall et al., 2007]. Hence,
improving the representation of clouds in climate models still paggeat challenge. While the
spatial resolution of climate models will likely increase saiisally in the years ahead (e.g., from
hundreds of kilometers to tens of kilometers in horizontal resoluticemymloud processes will
still be parameterized because they occur on sub-grid scalé®Id validate and formulate cloud
parameterizations, it is important to examine the relationshipgebea observed cloud properties
and their environment and then compare these observed relationships wéhsithatated by
models. This study documents the relationship between the cloud ettiggtures and large-
scale parameters in CMIP5 model simulations, and evaluates riflatienships against those
from state-of-the-art satellite observations. It complementgsanlier work Jiang et al., 2012], in
which the CMIP5 model performance in simulating water vapor and clovels the tropical
oceans was quantified in terms of spatial mean, variance aredatiom. One particular question
we address is how much discrepancy of simulated clouds from olsesviat caused by errors in
simulating large-scale parameters and how much is causddualyparameterizations used by the

models.
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Two cloud properties are examined in our analysis: the verticzlylved cloud water content
(CWC) and cloud fraction (CF), both being important variables in mateérg cloud radiative
effect (CRE), although their treatments in radiation codey way among models. Errors
stemming from either variable have varying degree of impadCiRE calculations. Thus, it is
necessary to inspect both quantities. To our knowledge, there have dedlel pefforts in
evaluating CMIP5 simulated clouds in terms of cloud fraction, clouctaptiepth, cloud top
height, cloud occurrence frequency and simulated satellite radiéswweh as reflectivity) (e.g., S.
Klein and grouppersonal communication, 2012). The multi-facets of cloud simulations revealed
by different cloud variables will provide comprehensive knowledge of ghoocksses and help to
accelerate the progress of improving cloud simulations in modwigjluting to the reduction of
uncertainties in climate change predications.

This model diagnosis work primarily utilizes the “conditional sangplapproach” originated
by Bony et al. [2004], in which cloud variables are sorted into bins of large-scakmeders,
representing distinct large-scale dynamic and thermodynamioesgThese large-scale variables
may directly or indirectly enter the cloud parameterization reelseto govern cloud formation,
growth and dissipation, and they also vary simultaneously as clouds .eXatvenber of studies
have applied this approach to address cloud and water vapor varmbiitldeedback8pny and
Dufresne, 2005; Huang et al.; 2006; Williams et al., 2003; Wyant et al., 2006; Bennhold and
Sherwood, 2008;Zhang et al., 2007;Su et al., 2008;Su et al.; 2011]. InSu et al. [2008], eight
large-scale quantities were examined in relation to CloudSanais CWC profiles. Clear
clustering of cloud structures in large-scale regimes wasaked. In this study, we use six large-
scale environmental parameters, including mid-tropospheric veviatatity at 500 hPawsoo),

lower-level divergence (LDV), sea surface temperature JS8Wer tropospheric stability (LTS),
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water vapor path (WVP), and relative humidity (RH) to sort CWi@ &F profiles. We also
conditionally sample clouds by precipitation so as to evaluate how shadeture the co-
variability of the two products out of moist processes. In this stwdydo not use SST gradient
and convective available potential energy (CAPE) &uiet al. [2008] because the cloud profiles
sorted by these two variables are not as distinctly clustesreg ather variablesSl et al., 2008].
Using a number of large-scale parameters offers multipkppetives of the cloud processes and
demonstrates clear benefits over using a single parametee, &gl show later. A “good” model
performance in one large-scale regime does not guarantee a good perfamasnatker regime.
When comparing the cloud distributions in large-scale regimesebatwbservations and
model simulations, one may wonder whether and how much the departumeslfservations are
caused by the imperfect simulations of large-scale parasn&eet al. [2011] used three large-
scale variablespsgg, SST and LTS, to sort cloud simulations in two climate models andesne
analysis system. They showed that the clouds produced by thalyses system match closer to
the CloudSat observation than the two free-running models, demonsttainmare stringent
constraint on grid-scale state variables helps to produce betied dields. For CMIP5
atmosphere-ocean coupled models, the large-scale environmental esaraabl governed by
internal model dynamics and could have sizeable deviations from abeass Such large-scale
errors may propagate into cloud errors through cloud parametenza®n the other hand, our
insufficient knowledge of cloud processes translates into unjuséifidnoc assumptions in cloud
parameterizations, causing significant errors in simulated clevels though the large-scale states
are correctly simulated. A primary goal of this study ixamine the relative contributions of

large-scale errors and cloud parameterization errors. To aclisyesme devise an innovative
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diagnostic framework to decompose the two types of errors and quéaeiifyelative importance.

Such decomposition is particularly useful to identify target areas for futodelrmprovements.
The structure of the paper is as follows. Section 2 describebsleevational datasets, models

and the diagnostic approach. Section 3 presents the comparison gfitineserted cloud profiles

and the decomposition of cloud errors. Concluding remarks are given in Section 4.

2. Observations, Models and Diagnostic Approach

2.1 Observations

We use CWC profiles from CloudSat 2B-CWC-RO (V4) and CF frombooed radar and
lidar retrievals, version 4Austin et al., 2009]. The uncertainties for CWC and CF are a factor 2
and ~5%, respectivelydiang et al., 2012]. For CloudSat CWC retrieval, the inclusion of
precipitating particles is a major concern when comparing wittietlnoutputs that may or may not
include rain or snow in the reported ice water content (IWCyaidiwater content (LWC)[ang
et al., 2012;Waliser et al., 2009]. Su et al. [2011] showed that the vertical structure of non-
precipitating CWC sorted by various large-scale variables doediffeat significantly from total
CWC. Thus, we use the total CWC sorted by large-scale paraneteompare with the modeled
counterparts for discussions of cloud vertical structure. For a tataudi estimate of model
biases, we use non-precipitating and total CWC as the lower andhqpels of observed CWC,
respectively. To conduct the conditional sampling, we construct montW{C Gind CF at
horizontal grids of 2.5° (longitude) x 2° (latitude) each and onto 4@@aldevels from the surface
to 20 km, with an interval of 500 m. The monthly CloudSat/CALIPSO fiata August 2006 to
July 2010 are used. As CloudSat/CALIPSO observations are madedvday (at ~1:30am and

~1:30pm local time), we limit our analysis to tropical (30°S-30&d¢anic regions where the
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impact of cloud diurnal cycle on the monthly mean data is relgtsrabll. The quality of satellite
retrievals is generally better over ocean than over lAogtip et al., 2009].

The observed mid-tropospheric vertical velocity at 500 hi2g)(is taken from the European
Centre for Medium-Range Weather Forecasts (ECMWF) interim reasébyrepresent large-scale

circulation. Low-level divergence (LDV) is defined as the mearzbatal divergence within 1000

1000
hPa and 850 hPa (i.eDV :$ I(D [V)dp, wheredP=150 hPa and is the horizontal winds),

850
calculated from ECMWEF interim reanalysis. LTS islcatated as the potential temperature
difference between 1000 and 700 hPa (LT&gso— 0700) based on the temperature measurements
from the Atmospheric Infrared Sounder (AIRS) on AgEor SST and WVP, we use the retrievals

from the Advanced Microwave Scanning Radiometer GRE) on Aqua, downloaded from the

Remote Sensing Systenigtp://www.remss.coinwith a horizontal resolution of 0.25°x0.25°. We

also use the relative humidity with respect to wdiee for pressures less than 300 hPa) from
ECMWEF interim reanalysis to sort cloud profiles. \&eplored using RH data from AIRS to sort
cloud profiles but found that the low bias of AIREl data in heavily cloudy regions limits its use.
The observed precipitation data are taken from @haebal Precipitation Climatology Project
(GPCP) monthly product from January 1980 to Decenitf¥04. The temporal coverage for
satellite data depends on respective mission peribdr conditional sampling, we re-grid the
original observed large-scale datasets onto hai@tgnid boxes of 2.5° (longitude) x 2° (latitude),
same as the CWC and CF. Details about the satddliteused can be founddiang et al. [2012].
2.2 CMIP5 models

While 19 models were examinedJrang et al. [2012], only 13 of them are used in this study for
two reasons. First, we select only models thaleast, are atmosphere-ocean coupled, as they are

used for future climate predictions. NCAR cesm1-6asnan atmosphere-ocean coupled model but
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IS not yet included because many of its large-secate@ables are not archived on the ESG at the
time of this study. The atmosphere-only model satiahs use prescribed SST, and thus are not
fair comparisons with coupled model simulationscd@el, we choose models that have archived
both CWC and CF at the Earth System Grid (ESG)dabbty the Program for Climate Model
Diagnosis and Intercomparison (PCMDI). All modeltpnts are from the last 25 years of “the
historical runs” Taylor et al., 2012] from 1980-2004. Original model outputs @rgyridded to the
same 2.5%%2° horizontal grid boxes and 40 verteadls as done for the observed clouds. CSIRO
mk3.6 model outputs of large-scale state variattedimited to 920 hPa and above. Thus, its LDV
refers to the averaged divergence between 920 &8@chBa. To calculate its LTS, we use SST
instead of air temperature at 1000 hPa, whichesl digr all other models. The model descriptions
and key references can be found in Table Jiarfg et al. [2012].

In some of the models, satellite simulators arelemgnted. The Cloud Feedback Model
Intercomparison Project (CFMIP) has developed dngnated satellite simulator, the CFMIP
Observation Simulator Package (COSP) for use inyn@IP5 models Bodas-Salcedo et al.,
2011]. These simulators take into account instrunsemsitivities and can circumvent retrieval
errors when their outputs of satellite radiancesdirectly compared with satellite measurements
(e.g., radar reflectivity, brightness temperaturBddas-Salcedo et al. [2008] showed useful
application of CloudSat simulator in evaluating rabgimulated cloud structures. However,
differences in the simulated radiances from theuktors in models compared to the satellite
measurements may not tell the differences in thdeatead CWC from the “true” CWC because the
“true” cloud particle size and shape are unknowat assumptions for them in the simulators are
model-dependent. It is possible to obtain very lsimiadiances from the simulators given two

different CWC profiles by using different cloud pele size assumptions. For CWC, comparing
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model outputs with the CloudSat retrieval is prdpabot more uncertain than comparing
reflectivity and then inferring CWCSeve Klein 2012, personal communication]. For CF,
however, CloudSat/CALIPSO simulator CF may be aarfair choice for comparison with the
radar-lidar combined CF as instrument sensitivityone of the most important factors in cloud
detection which determines CF, other than cloudigdarsize and shape assumptions. At the time
of analysis, only six models (CCCMA am4, CNRM cnBSL cmb5a, MIROC miroc5, MRI
cgcm3, and UKMO hadgemz2-es) on the ESG provide €80 simulator CF and two models
have CloudSat simulator CF, while many provide liternational Satellite Cloud Climatology
Project (ISCCP) simulator CF. For purposes of itatson, we examine both the original and
CALIPSO simulator CF for the six models, and usky time original CF for the rest of models. We
plan to add more simulator CF results when theusatpecome available on the ESG.

Figure 1 shows the zonal-mean and tropical-mearfN&D°S) original and CALIPSO
simulator CF for the six models. For the zonal nsedns clear that all simulator CFs are less than
the original model CFs in most of the free tropasphand at all latitudinal bands, except that
CCCMA am4 simulator CF shifts higher in altitudeaththe original CF in the tropical upper
troposphere. The lower values of the CALIPSO sitaul&F than the original CF likely result
from the inability of CALIPSO to see through thickouds. For the tropical means, the CALIPSO
simulator CF for CCCMA am4 is greater than theioaCF at pressure levels above 200 hPa and
in the boundary layer, but is significantly smaliean the original CF between 800 hPa and 200
hPa. For all other models, the simulator CF is wndhan the original CF over most of the
troposphere, except that IPSL and MIROC models hlagesimulator CF about 5% greater than
the original CF at 900 hPa. For MRI cgcm3 and UKK&Igem2-es, the CALIPSO simulator CF

and the original CF are nearly identical at alt@sichigher than 200 hPa. Apparently, instrument
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sensitivity matters in the quantitative comparisinCF. An ideal choice for the comparison
against the radar-lidar combined CF retrieval sthdad combined radar-lidar simulator CF, which
is not available at present. Hence, using CALIP8ukator CF alone does not fully address the
“fairness” of model-data comparison. Nevertheléiss,differences between the simulator CF and
original CF shown in Figure 1 illustrate the unaerties associated with satellite retrievals and
caveats using original CF for quantitative comparisvith observations. We shall bear in mind
these caveats when interpreting the model-observdiscrepancies.
2.3 Diagnostic framework

The essence of the conditional sampling approadb teeat tropical clouds as a function of

large-scale regime parameters, in lieu of geogcapispatial coordinates. We denote the observed

and model simulated cloudiness (CWC or CF) in gdescale regime of the variable V @and

C.", respectively, and the occurrence frequency (gitibadensity function, pdf) of the large-

scale regime V a$’ for observations and®"™ for models, WithfF’V"'de:l. The tropical-

—00

averaged cloudiness, <C>, can be expressed agegmnahof cloudiness in each regime over the

entire range of the V values, i.e.,

<CoM>= _f P>"ComdV . (1)

—00

The difference between the model-simulated and rebdecloudiness in each regime V

iso(P.C,) =P"C,"-P°C,°, which can be decomposed into three components,
O(PC,)=C/ ®P,+P’[bC, + P, [8C, . (2)
In eq. (2),0P, =P" - P’ is the difference between the modeled and obsepdéaf large-

scale regime V and the first term on the right hame (r.h.s.) represents the cloud errors

10
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associated with inaccurate simulations of largéesgaarameters assuming accurate cloud

parameterizations®;) — we call it the “large-scale error”. The seconuint®n the r.h.s. of eq. (2)
represents the cloud errors due to the incorrenidcharameterizationsdC, =C;" —C;) given

the correct large-scale parameter pHf Y — we call it the “cloud parameterization errorhe last

term is the co-variation of the first two error soes. Integrated over the possible values of V on
the tropics, we can compute the total errors onttbygical mean and the contributions of each
component to the total errors.
3. Results
3.1 Sorting clouds by dynamical variablesssoo and LDV
3.1.1 Correlation betweenmsqgand LDV

Although it is beneficial to examine the cloud sture in many different large-scale
parameters, it is well-known that these large-sga@leameters are not independent. Here, we
examine to what extent they are correlated sowsahave an idea about how much additional
information may be provided by using multiple paedens for conditional sampling. For
dynamical regimes, we choosegy and LDV as two regime indicators. The scatter pidtigure 2
demonstrates they are indeed correlated with a&ledion coefficient of 0.77. The upward motion
corresponds to lower-level convergence and viceaveXoticeable scatter exists, especially over
intermediate circulation regions (—40 hPa/daysso < 20 hPa/day), where a wide range of LDV
values (either divergence or convergence) are mdsdowith the same vertical velocity. As 40%
of the variance of LDV is not explained koo examining clouds in the functional space of LDV
would provide some new information in addition ¢otgg clouds bywsoo.

3.1.2 Cloud profiles sorted bywsoo

11
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SincelJiang et al. [2012] evaluated the model performance in simatathe magnitudes of
CWC and CF at discrete pressure levels, our attenti this paper is focused on the vertical
variations of CWC and CF in large-scale parameggimmes. Figure 3 displays the modeled CWC
and CF (as well as simulator CF, if available) aduaction wsgo for CloudSat/CALIPSO
observation and 13 CMIP5 models. The horizontal méphe tropical wsgo from ECMWF
averaged for the CloudSat/CALIPSO observation pefg®06-2010) is shown on the lower-right
corner, and the differences between the model stedland the ECMWF reanalysisoo (25-year
average) are shown under each model. The obse&d &hd CF are grouped into two clusters:
one associated with deep convective clouds in soeraling regimes and one associated with
stratiform clouds in the descending regimes.cA&changes from positive to negative, CWC and
CF amounts in the boundary layer (below 800 hPajedese, while their amounts in the middle
and upper troposphere (UT) increase. The heigmatimum CWC is lower than the height of
maximum CF because of the high sensitivity of CAR@Plidar to thin cirrus. All models capture
the two dominant modes of clouds (high and low d&)uhowever, the variations in the vertical
and withosgodiffer substantially from the observations.

In the large-scale ascending regimeso{ < 0), out of the 13 models, only two GISS models
(e2-h and e2-r, the same atmospheric model coupledo different ocean models) reproduce the
high CWC in the UT around 200 hPa, although its mtage is higher than the observed total
CWC. The CF for high clouds from GISS is consisteith CWC, with its peak around 200 hPa,
lower than the lidar-radar combined retrieval. TBALIPSO simulator CF for GISS is not
available, which might be different from the originCF. GFDL cm3 deep convective clouds
spread a broad layer from the middle troposphetbddJT; however, its maximum CWC peaks

at 500 hPa, lower in altitude than CloudSat CWC aoftier models do not produce CWC peaking

12
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in the UT,; instead, their CWCs maximize between @@d 400 hPa. CCCMA canesm2 and
CNRM cmb5 have their maximum CWCs lower than 800 ¥ the ascending regimes. CSIRO
mk3.6 and UKMO hadgem?2-es have comparable CWC rmatgs for deep clouds, both being
quite weak and reaching lower in altitude than ttserved. On the other hand, all models
produce maximum CF around 200 hPa, where conved&trainment prevails. Most models tend
to have a secondary maximum CF in the lower tropespbetween 700 and 800 hPa, while INM
cm4 and MIROC micro5 have a distinct peak CF arca®@ hPa in addition to the maximum CF
around 200 hPa. The INM cm4 has the weakest CWHReitarge-scale ascending regimes among
all models. Its low bias in CWC is compensated tsyhigh bias in CF. We speculate that the
modeled CF may have been heavily adjusted in soowel® because of its direct relevance to
CRE calculations. For CWC, less attention may Hasen paid and there is more freedom in the
models as some radiation codes do not explicittg tato account the values of CWC. For the
models that produce CALIPSO simulator CF, the sataulCFs are noticeably closer to the radar-
lidar combined retrieval in the middle troposphanel UT, confirming the usefulness of applying
simulator for CF comparison. The MIROC miroc5 hashigh bias of CF in the middle
troposphere, which is not alleviated by using iISLPSO simulator CF. For models that do not
have CALIPSO simulator CF, there appear to be higkes in CF from the middle troposphere to
200 hPa, but low biases in CF above 200 hPa.

In the descending regimesosgy > 0), all models rightly produce clouds in the lowe

20 troposphere, although the CWC and CF magnitudesglthud top heights and how CWC and CF

21

22

23

change withmspoVvary significantly between the models and the olzgen. INM has the lowest
low cloud CWC among all models. MRI cgcm3 also htke stratiform clouds, with a local

maximum aroundosgo Of 20-30 hPa/day, unlike the observed low cloud Cwi&ximizing over

13
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500> 50 hPa/day. Most models do not reproduce theedser of CWC in the boundary layer
when the subsidence rate decreases, except CSIR®6 nakd GFDL cm3, despite that its
magnitudes in CWC and CF are different from theeolstions. All modeled CWCs in the
descending regimes are smaller than CloudSat ©OWIC but greater than CloudSat non-
precipitating CWC (not shown). The simulated lowurl CFs are generally smaller than the
observed, except for INM cm4 and MIROC miroc5. TMEROC miroc5 CALIPSO simulator CF

is rather similar to its original CF. The decreasdéow cloud CF with the decrease of subsidence
rate is better captured by the simulator CF tharotiginal CF in the UKMO hadgem2-es.

For the spatial distributions afsoo, the modeled fields tend to have a positive masscending
regimes but a negative bias in descending regiesggcially over southeast and equatorial Pacific.
The negative biases near the inter-tropical corererg zone (ITCZ) are likely related to the
common “double-ITCZ” problem manifested in preaivon. The pdfs ofsgp are broadly similar
among the models and the ECMWEF reanalysis.

Using the diagnostic framework discussed in Secfid®, we decompose the differences
between the model simulated and observed CWC andtGRhe “large-scaleufsog) error”, “cloud
parameterization error” and “co-variation erroriglire 3b). A striking feature in Figure 3b is that
the total errors (bottom panels) are predominantgtributed by the “cloud parameterization
error”, while the “large-scale error” and the “cariation error” are relatively small and tend to
cancel each other in most circulation regimes. Téagure is even clearer in the tropical averaged
errors (Figure 3c), with the contribution from tleboud parameterization error” accounts for more
than 95% of the tropical-averaged total errors. fidlative small contribution by simulated large-
scale vertical velocity to the total cloud errornst surprising, assoois largely controlled by

global energy balance, which is well constrainedhi@ models. The dominance of the “cloud
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parameterization errors” reflects our lack of ustkending of the sub-grid scale cloud processes,
which have been and will continue being the fodusngoing model development.

Note that the actual values of model errors depmmdvhich retrieval product is used and
whether simulator CF is considered. For CWC, tlgm sif errors may change with response to
CloudSat total or non-precipitating CWC. On theptcal average (Figure 3c), most model-
simulated CWCs are close to the non-precipitatiog€r bound) CWC in the UT above 400 hPa,
but tend to be larger than the non-precipitating @\W&hd smaller than the total CWC in the
boundary layer. In the middle troposphere betwegh &d 500 hPa, most models overestimate
CWC, even compared to CloudSat total CWC, excepROSINM and UKMO. Considering the
CALIPSO simulator CF for CNRM, MIROC, MRI and UKMQhe CF bias is mainly in the
tropical tropopause layer (TTL) above 200 hPa anthe boundary layer, while the CF bias is
relatively small for the rest of the tropospherae TCCCMA simulator CF bias is approximately
opposite to that for the original CF. The IPSL siator CF is closer to the observed in the TTL
but deviates more from the observed at 200 hPa amdgo the original CF, indicating potential
problems with the simulator itself. The originabdel CF from CSIRO mk3.6 is very close to the
observed at the pressure levels below 400 hPasifmtarity between CSIRO mk3.6 and UKMO
hadgem2-es might because the convection schemiasthnmodels are based on the mass flux
convective parameterization Bregory and Rowntree [1990], with varying degrees of adjustment.

Within the large-scale circulatiom4oo) regimes (Figure 3b), compared to CloudSat toW&ICC
the most common cloud parameterization errors inCC&ke an underestimate of CWC in the UT
and the boundary layer (note the sign change cadpsy non-precipitating CWC), but an
overestimate of CWC in the middle troposphere anthediately near the surface. Two GISS

models are different from the others in that tipgiak CWC is shifted too high in the UT, creating
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a dipole of biases, with high (low) bias above ¢l 350 hPa. Shown in Figure 3b are original
CF biases, not the simulator CFs; thus, cautiomsé@ be exercised for quantitative assessment.
For the original CF, most models have high biasnf@0 hPa up to 200 hPa, but low bias in the
boundary layer. INM and MIROC have a high bias id &ar the surface, while MIROC has a
low bias in CF in the UT. The opposite sign of hibud CWC and CF biases for most models
indicate the inconsistency in parameterized cloagsrand coverage, which is probably a result of
model “tuning”. Compared to other models, CSIRO rBk&nd UKMO hadgem2-es have
relatively small biases in the middle troposphereerms of both CWC and CF.
3.1.3 Sorting clouds by LDV

Given the close correlation betweefyoand LDV, we expect clouds sorted byyand LDV
bear very similar features. A cursory look at Fegda suggests this is the case; however, a careful
examination reveals interesting differences. Fitlsg strongly lower-level convergent regimes
(LDV < 0) are associated with stronger convectildaids in the lower to middle troposphere than
the large-scale ascents (Figure 3a), both in tleerehtion and models (except CSIRO mk3.6).
This suggests that low and middle-level convectgnstrongly tired to the convergence between
1000 and 850 hPa, but less correlated with midHgeetical velocity. Differences in the UT
clouds are rather small when sorted dyyoand LDV. Second, the low clouds are congregated
within the divergent regimes of LDV between 0 andl®® s* for the observation and most
models. CWC and CF are rather uniform within tlaisge of LDV, unlike the obvious decreasing
trends in them with decreasing subsidence rate §megativewsog). Hence, we think LDV is
probably not the best quantity to characterize tagation of low cloud CWC and CF. The
simulator CFs match better with the radar-lidarieged CF in the UT and in the boundary layer

over the divergent regimes. In the two GISS modae mid-to-high clouds emerge over highly
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divergent regimes (the right most in the figure)iahhare relatively rare in occurrence frequency.
These high clouds are not present in the observation the strongly descending regimes (Figure
3a). They indicate an inconsistency in the modabugations of LDV orwsg.

The biases in simulated LDV across the models Ilsawdar patterns to the biasesdgg A
common feature is that the models tend to be leksiped: there are positive (negative) biases in
the regions of climatological convergence (divergn resulting in less horizontal gradient in
LDV.

We conduct the same decomposition for the threepooents of errors (Figures 4b and 4c).
The gross features are very similar to those inuféig 3b and 3c. The cloud parameterization
errors dominate the total errors, with the largales@and co-variation errors approximately cancel
each other. On the tropical average, the cloudnpaterization error accounts for nearly all of the
total errors.

3.2 Sorting clouds by thermodynamic variables SST, LTS and WVP
3.2.1 Correlation between SST, LTS and WVP

Figure 5 displays the scatter plots of LTS and WatRainst SST. The linear correlation
between SST and LTS is —0.73, with large scatter cvld SST less than 300 K. WVP bears an
approximately exponential relationship with SSTthweharp increase of WVP when SST is greater
than 300 K, related to the “super-greenhouse” eftécwater vapor Raval and Ramanathan,
1989]. The linear correlation between WVP and SS0.90. Such scatter plots are useful for us to
understand the differences in cloud structures veoeted by SST, LTS and WVP separately.

3.2.2 Cloud profiles sorted by SST
In SST defined regimes, the general clustering igh {low) clouds in warm (cold) SST

regimes is captured by all models (Figure 6a). Canegb to the high clouds in the large-scale
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ascending regimes, the magnitude of high clouds &&T warmer than 300 K appears to be
weaker, which is because the cloud amounts in baxchf wsg or SST is not weighted by the pdf
of that bin. It is evident that all models, exc€IES e2-h and e2-r, do not produce peak CWC as
high in altitude as the CloudSat observation. Mostlels have maximum CWC around 500-600
hPa in the warm SST regimes, while IPSL cmba and 84@m3 peak even lower than 700 hPa.
UKMO hadgem2-es exhibits one maximum in the UT mdsleng deep convective clouds, and one
maximum in the middle troposphere reminiscent ohelus congestus, but the CWC magnitude is
very weak compared CloudSat total CWC (but compartedh CloudSat non-precipitating CWC),
despite that the UKMO model includes snow, butaio,rin the CWC. In terms of the original CF,
all models reproduce the large CF in the UT assediavith convective detrainment, but many
models have an overestimate of middle-level CFctvlaire obviously mitigated by the CALIPSO
simulator CF, except in the MIROC miroc5. The MIR®@h-resolution miroc4h (not shown)
produces CWC very similar to the low-resolution @l — the high bias of middle-level clouds in
MIROC is not caused by model resolution.

In the cold SST (< 300 K) regimes, we observe goreapable increase of cloud top height
with increasing SST (not so much with the decrezsesqo in Figure 3a), accompanied by the
decrease of CWC and CF. In the models, the vanstaf cloud top height, CWC and CF with
SST are not as linear as the observed. CCCMA, CSERDL, and IPSL models reproduce the
decrease of stratiform CF with increasing SST, thet increase of cloud top height is not as
conspicuous as in the observed data. The UKMO sitoulCF has a nice resemblance to the
observed variation, although its original CF h#telisystematic change with SST. In other models,
low cloud CF stays nearly constant or even increasth SST for SST lower than 295 K. Bsny

and Dufresne [2005] pointed out, the variation of low cloud dtisn or CWC with SST is very
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important in determining the net cloud radiativecing sensitivity to climate change. Hence,
diligent efforts need to be expended to improve el performance in this regard. Many
models have clouds reaching above the freezing ievbe very cold SST regimes around 290 K,
likely caused by misplaced convective detrainmemtintrusion of mid-latitude storms into the
subtropics. Interestingly, such misplaced midaid high clouds in the models over the cold SST
regimes do not occur in the large-scale subsideagames (Figure 3a), suggesting that these
clouds are associated with wrongly simulated upwaations over climatologically cold waters.
One region of problem may be the southeastern iPasihere most models have negativgo
bias, which may be responsible for the erroneoukllmiand high clouds there.

The differences of the coupled model simulated &8 the observed SST are generally
small, except near the west coast of Peru and Ghitbe northwestern Pacific and north Atlantic.
The biases are quite consistent across the moaelicating rather universal problems likely
associated with biases in surface radiative antfheas related to marine stratiform clouds.

Separating the modeled errors into three compornantise regimes of SST (Figure 6b), we
again find that the cloud parameterization erromnithate the total errors. However, the
contributions of the errors due to inaccurate satiohs of SST are non-negligible in each SST bin
and on the tropical average (Figure 6c¢). For examffle departure of total errors from the
parameterization errors for CWC are discernible%10 hPa for NCC, which are not present in the
counterparts in the regimes @fpo.

3.2.3 Cloud profiles sorted by LTS

Although LTS is strongly correlated with SST, tHeutls sorted by LTS show some distinct

characteristics (Figure 7a) that are not presetittenSST sorted plots (Figure 6a), particularly for

stratiform clouds. In CloudSat/CALIPSO observatitow cloud CWC and CF decrease linearly
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with decreasing LTS until LTS < 12 K, along with @ecrease in cloud top height. This is similar
to the changes of clouds when SST increases fremtlan 290 K to 300 K. However, although
most models do not reproduce systematic changéswotlouds with SST, the majority of the
models capture the increase of low clouds withaasing LTS, especially in the simulator CF.
Only CNRM cm5 and two GISS models exhibit little aposite changes of clouds with LTS in
stable lower tropospheric regimes (LTS > 12 K).Sadifference in SST and LTS sorted cloud
structure may tell us that the model simulated lots@pospheric temperature decouples from the
underlying SST, while the observed lower troposghtamperature is strongly tied to its lower
boundary. The stratiform cloud parameterizationsdughn most of the CMIP5 models have
ingredients, with varying extent, that mimic thesetved relationship between LTS and low cloud
fraction [Klein and Hartmann, 1993]. However, the decoupling of lower troposph&emperature
from SST is somewhat disturbing.

For LTS < 12 K, the sorted cloud structure is v@milar to that in the regimes of SST > 300
K, confirming the strong correlation of LTS and S&Jer warm waters (Figure 5a). As shown in
Figure 5a, more scatter is found between LTS anfl f86SST < 300 K than for SST > 300 K.
This is probably also related to why model simwdakew clouds are well correlated with LTS
when LTS > 12 K but not with SST < 300 K. The diffeces in the simulated LTS from the AIRS
observation vary between models. The northeastednsautheastern Pacific near the coasts are
two common regions of negative LTS biases. Poshiases are seen over the deep convective
regions, including the western Pacific and equatdfiCZ.

Figure 7b displays the three components of moder®rin the functional space of LTS.
Compared to the decomposed errors described bef@dind that the relative contribution of

“large-scale (LTS) error” is significantly largenan the large-scale errors associated \wify,
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LDV, or SST, for both high and low clouds. For exdaey CCCMA canesm?2 simulated LTS has an
approximately uniform high bias over the tropicakan, causing the pdf of LTS shifted towards
higher stability values. This is associated witmegative CWC bias in the relatively unstable
regimes (LTS < 15 K) and a positive CWC bias in shable regimes (LTS > 15 K), compared to
CloudSat total CWC. For LTS between 12 and 15 K,rthgative CWC bias due to the imperfect
LTS is superimposed on the dipole pattern (nega@move, positive below) of cloud
parameterization errors, resulting in an amplifmatof the negative UT CWC bias, approximate
cancellation of errors between 600 and 700 hPaaam¥ersal of positive to negative cloud bias
below 700 hPa. Over this regime (12 < LTS < 15tKg, large-scale error is not negligible and the
co-variation error amplifies the large-scale erbmlow 600 hPa, instead of compensating it.
Similarly, the error associated with the LTS sintiola in the GFDL cm3 also makes an
appreciable departure of the total error from tloeid parameterization error in each LTS bin and
on the tropical average (Figure 7c). Even compatinghe non-precipitating CWC, the “large-
scale (LTS) error” is more pronounced than those@ated withwsgo, LDV and SST.
3.2.4 Cloud profiles sorted by WVP

The clouds sorted by WVP (Figure 8a) exhibit vamjilgr structure to those sorted by SST. It
is related to the close correlation between SSTVENG® shown in Figure 5b. The only difference
may be in the erroneous middle and high clouds theecoldest SST regimes, which do not show
up in the lowest values of WVP. This might be redhto the fact that many models overestimate
WVP over climatologically cold waters (see corraggiag maps oAWVP, especially for GISS
and MRI). The inconsistent patterns of sorted csomddifferent large-scale regimes reveal certain

biases in the model simulated large-scale parameblost models underestimate WVP over
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climatologically warm waters and large-scale asoenoegions. This may cause the underestimate
of CWC over these regions.

For the relative contributions of three error comgats, we find that the errors associated with
the simulated WVP can be of comparable magnitudbabof the cloud parameterization error in
individual WVP bins (Figure 8b). On the tropicalesage (Figure 8c), the deviations of the total
errors from the parameterization errors are evideatnumber of models, although the dominance
of the cloud parameterization errors still holdsvarsally. Using GISS e2-h as an example, the dry
bias over the very moist regions (WVP > 50 mm) @ea negative CWC bias (Figure 8b),
outweighing the positive CWC bias caused by thearmpaterization error in the UT and in the
lower troposphere. The total CWC error in this mgiresembles that from the large-scale error for
WVP > 50 mm. The UKMO hadgem2-es has a widesprepatids over the tropical ocean, which
is partially responsible for the negative CWC lmasr the moist areas with WVP > 50 mm.

3.3 Sorting clouds by relative humidity

RH has been used commonly to parameterize CF [&gtelman et al., 2010]. Thus,
examining the cloud profiles as a function of RHdisectly relevant to validate the cloud
parameterizations. Figure 9a shows the CWC andr@fitgs sorted by RH at corresponding levels
(MIROC miroc5 did not provide RH output on the ESE&)r the observed data, we use ECMWF
RH, as AIRS RH data are missing over thick clouelyions. Note that the RH data from the two
GISS models are with respect to (w.r.t.) water tigkout the troposphere, unlike other models and
the ECMWEF reanalysis, in which the saturation vgpasssure is with respect to ice (water) above
(below) the freezing level. For the ECMWF reanay$tH is with respect to water above 273.16
K, to ice below 250.16 K, and with respect to a tom& of both in between

(http://lwww.ecmwi.int/publications/manuals/metvievd@nual/Relative  Humidity.html The exact
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temperature threshold for the switch from w.r.ttevao ice in the CMIP5 models may be quite
different. Hence, there is an ambiguity in compgikRH from different models and the reanalysis.
A rescaling of RH with a unified temperature thr@shacross the models may be needed for direct
comparison of modeled RH profiles. Nevertheless,sfandard model outputs of RH on the ESG
are used in Figure 9a.

In general, there is a dominant peak of CWC inUWhieassociated with RH greater than 60%,
which is true for several models such as BCC c<a#DL cm3, IPSL cm5a, NCC noresm, and to
a lesser extent, CSIRO mk3.6 and UKMO hadgem2-&CNA canesm2 seems to have two
CWC maxima, a weaker one in the UT and a strongerio the middle troposphere associated
with high RH. CNRM cm5, MIROC miroc4h, MRI cgcm3vearather uniform distribution of
CWC in the vertical over the regimes of RH > 60%IS& e2-h and e2-r capture the
correspondence of high RH with high clouds, desthté their RH values are lower than other
models in the UT because they are w.r.t. to water.

The variations of low clouds with RH differ subdiahy in the models from the observations.
The most notable discrepancy is that the modelaalgroduce sufficient CWC in the areas of
relative humidity less than 40%, while the obser@dudSat CWC spans the full range of RH,
even when RH is less than 20%. Despite that thengiat high bias of CloudSat CWC for thin
liquid clouds, the missing clouds in the dry regon the models may still be an important issue
that requires further study. Applying the simulatGFs vyields better agreement with the
observation than the original CFs for most of tleeid features.

For the three error components, besides the dorenaithe cloud parameterization errors, we
observe significant contribution of the large-sca&eor in each RH bin (Figure 9b). The

underestimate of high RH by the two GISS modelsaeggly contributes to the negative (positive)
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CWC bias in the UT over relatively moist (dry) regs with RH greater than (less than) 60%. On
the tropical average (Figure 9c), the departuretotl errors from the cloud parameterization
errors are evident for a number of models.
3.4 Sorting clouds by precipitation

Since precipitation is not a large-scale environtaleparameter that is used to parameterize
clouds, the purpose of sorting cloud profiles bggitation is to visualize their co-variations as
the two are closely coupled. Figure 10a shows tiatdifference between the models and the
observation is quite large, while the vertical stawes of precipitating clouds are rather similar
among the models. Many models exhibit a tri-modalcsure of clouds Johnson et al., 1999],
with increasing cloud top heights with strongergggation. Most models do not produce clouds
in the very weak precipitation regimes (rain rat®.€5 mm/day), except CSIRO mk3.6, MRI
cgcma3, GISS e2-h and e2-r (which produce middlellelouds over the light rain regimes), while
the CloudSat/CALIPSO observation shows signific@W¥C and CF in the lightly precipitating
regimes Haynes and Stephens [2007] reported that the occurrence frequencyghit Irain observed
by CloudSat is higher than previously thought drat simulated by climate models. The simulator
CFs exhibit a two-modal structure of clouds, closerthe observation than the original CFs,
although differences from the observed CF arecgtilie evident.

We conduct a similar decomposition of three ermmnponents for clouds in the precipitation
regimes. Although we do not regard them as thecesunf cloud errors, they do tell us how much
precipitation errors are associated with cloud rerr@gFigure 10b). Again, the errors of
parameterized clouds in a given precipitation regare predominant in the total errors, while the
common overestimate of precipitation rates in thedebs translate into positive CWC biases,

partially compensating the negative parameterinabimses in most models. For the two GISS
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models, the positive CWC biases associated witlelthed parameterization errors are exacerbated
by the positive biases associated with the ovenagé of high precipitation rates (see Figures 10b

and 10c).

4. Conclusions

This paper examines the cloud distributions indasgale parameter regimes, focusing on the
cloud vertical structures and their variations widinge-scale variables. The regime-dependent
model biases from the observations are decompaosedhree components, the large-scale errors,
cloud parameterization errors and the co-variatioonrs. Despite of a variety of discrepancies in
the simulated cloud structures, a universal feattbat in all models, the cloud parameterization
errors dominate, while the large-scale and the ai@tion errors are secondary. This finding
confirms the deficiency in the current state of\lexige about the governing mechanisms for sub-
grid cloud processes, as pointed out in the IPCCLARforts should be devoted to ongoing
improvements of cloud parameterization schemes. tién other hand, the relatively small
contribution of large-scale errors to the totaluclerrors suggests that all CMIP5 models produce
reasonable large-scale “mean” states, which areabtg the first-order depiction of current
climate. This is comforting as these large-scasgesvariables are constrained by global energy
balance, such that modelers usually have lessdmeed “tuning” them than modifying cloud
parameterizations. With the new satellite obseovatias observational metrics, we envision that
significant progress will be made in cloud parame#gions in the coming years.

This study focuses on comparing model simulatedicclavater content (CWC) and cloud
fraction (CF) vertical structures with 13 atmospghecean coupled models. We recognize that
large uncertainties exist in the quantitative assest of model simulated CWC and CF. For CWC,

a major uncertainty is associated with the inclusdprecipitating condensates in CloudSat CWC
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retrieval, while CMIP5 models have non-uniform treants for snow and rain. This makes a fair
comparison extremely difficult. Using the total CV&@d non-precipitating CWC as the upper and
lower bounds of observed CWC, we find that the sigihmodel biases in CWC, relative to the two
bounds, reverse for many models, suggesting tratnibdeled values are actually within the
observed uncertainties. Some models exhibit pergigtign of errors with respect to both CWC
guantities, indicating a true signal of biases. &mample, the underestimate of CWC by INM cm4
and the overestimate of CWC by the two GISS modsisrobust at most of the vertical levels.
Many models do not include rain water in the liquidter content output. Therefore, compared to
the non-precipitating CWC, an overestimate of LVE@rievailing. However, compared to the total
CWC, most models have an underestimate of LWChéniT, many models produce CWC values
close to CloudSat non-precipitating CWC, but mwessithan the total CWC.

For cloud fraction, we find that using CALIPSO siator CF generally brings the model
results closer to CloudSat/CALIPSO combined CF. Ginthe best examples is UKMO hadgem2-
es: the simulator CF shows a much better agreemémthe observed CF for both high and low
clouds. Hence, we think it is beneficial to apphe tsimulator approach in model evaluations,
especially in terms of CF, for which instrument s@vity has a large impact on the observed
values. Besides CALIPSO simulator, CloudSat, ISG@R other simulators will also be useful.
Using CALIPSO simulator CF clearly mitigates themséngly high bias of middle-to-high cloud
CF shown in the original CF by many models; howetrex biases of CF in the UT above 200 hPa
and in the boundary layer are still present, fadhesi the simulator CF or the original CF,
suggesting that improvements in the model simul&tedre still needed.

For the large-scale errors, relatively larger esr@re associated with thermodynamic

parameters such as LTS, WVP and RH, than dynanmanpeters such assqo and LDV. The
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model simulated temperature and moisture structamesnfluenced by diabatic heating resulting
from latent heat release and radiation. The lattercoupled with convection and clouds. Hence,
the relatively large errors associated with LTS, vahd RH than witlmsg and LDV may be a
manifestation of the feedbacks of cloud errors dhéolarge-scale thermodynamic parameters. The
model improvements for clouds are certainly a “tway” game — the coupling between clouds
and large-scale fields requires diligent validasiof both fields.

In this study, we show that the model simulatedatimns of clouds with height bear large
discrepancies from the observations. The model Istedl deep convective clouds (in terms of
CWC) usually do not penetrate as high into the WTtlee observed, although the maximum
detrainment height shown by CF is correctly plaaesind 200 hPa. The inconsistency between
CWC and CF vertical structures indicate the misimatccloud parameterizations. For low clouds,
we find that the change of cloud top height wittgé&scale parameters is usually missing in the
models. The best large-scale parameter in the maldat characterizes the changes of low cloud
properties (CWC, CF and cloud top height) is LT#eD large-scale variables have little bearing
on the low cloud amounts, while their counterpfmsn the observations show clear correlation
with the systematic low cloud amount changes. Fomate sensitivity, such variations of cloud
amount with large-scale parameter are probably meleyant than the magnitudes of mean cloud
amounts. This is an area that significant improvesi@re needed for next generation of cloud
parameterizations.

The large-scale parameters used for this studyatrea complete list of variables that may
affect cloud simulations in climate models. Addiab parameters, such as wind profiles (including
wind shear) and aerosols may be also importanth&umore, the combinations of large-scale

parameters and their joint distributions may revaddlitional useful information for physical
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mechanisms that control cloud variabilities. Coméid investigations using conditional sampling
approach with innovative combination of variousgkscale quantities may lead to potential
breakthrough in cloud parameterizations.
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Figure Captions

Figure 1. Annual zonal-mean (top) original and (middle) CALIPSO simulatoud fraction, and (bottom)
tropical mean (30°S-30°N) original and CALIPSO simulator feéim six CMIP5 models. Model monthly
outputs from 1980-2004 are used.

Figure 2. Scatter plot of lower-level divergence averaged between 1860880 hPa against mid-
tropospheric vertical pressure velocitysdy) for all tropical oceanic grid boxes. Both quantities are from
ECMWEF interim reanalysis averaged from January 1980 to Decetfibdr

Figure 3. (a) Vertical profiles of cloud water content (CWC, in color dings) and cloud fraction (CF,
original CF in black contours, CALIPSO simulator CF in whientours) sorted bywsqg for the
CloudSat/CALIPSO retrievals and the CMIP5 atmosphere-oceanecbopidel simulations. The PDFs of
500 are shown in gray dashédides. For the observation, the ECMWF reanalysig, is used to sort
CloudSat total CWC and CloudSat/CALIPSO combined CF. The differef model simulatedsy,from
the ECMWF reanalysi®sqgois shown for each model.

Figure 3. (b) Decomposition of model simulated CWC (in color shadings) andrC€oftours) errors in
the regimes ofosog (top row) the large-scale error, (second row) the cloud paesizegion error, (third)
the co-variation error, and (fourth) the total cloud errors. TW&Crrors are relative to the CloudSat total
CWC. The model original CFs are used. Only 12 models are stioa/o space constraint. GISS e2-r is
not shown and similar to e2-h.

Figure 3. (c) Tropical averages of model simulated CWC and CF errorghencbntributions of three error
components. The blue (green) curves are the CWC errorvediatthe CloudSat total (non-precipitating)
CWC. The red (black) curves are the original (CALIPSO sitaw) CF errors relative to the
CloudSat/CALIPSO CF retrieval. Only 12 models are shown du@aoesconstraint. GISS e2-r is not

shown and is similar to e2-h.
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Figure 4. Same as Figure 3, except lower-level divergence (LDVMsél to sort cloud profiles. The errors
relative to the CloudSat non-precipitating CWC are not showntren@ALIPSO simulator CF errors are
not shown.

Figure 5. Annual mean lower-tropospheric stability (LTS) calculatesinf AIRS temperature data and
AMSR-E water vapor path (WVP) scattered against ECMWissieface temperature (SST) for all tropical
oceanic grid boxes. The monthly AIRS data from September 2002 to2MeY and the AMSR-E data
from June 2002 to December 2010 are used.

Figure 6. Same as Figure 3, except SST is used to sort cloud profiles.

Figure 7. Same as Figure 4, except LTS is used to sort cloud profiles.

Figure 8. Same as Figure 4, except WVP is used to sort cloud profiles.

Figure 9. Same as Figure 4, except relative humidity (RH) is usedrtockoud profiles. The maps of 3-
dimensional RH are not shown due to space constraint. MIROC mifaddth only CWC, not CF) is
shown instead of MIROC miroc5 because RH data are not avditabigroc5 and CF is not available for
miroc4h.

Figure 10. Same as Figure 4, except surface precipitation is used to sort clouesprofil
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